HuMIG: A NEW HUMAN MEMBER OF THE CHEMOKINE FAMILY OF CYTOKINES

Joshua M. Farber

Division of Infectious Diseases, Department of Medicine Johns Hopkins University School of Medicine Baltimore, MD 21205

Ľ	ecoi.	hou	March	2	1003
г	lece1	vea	March	۷.	1991

SUMMARY Characterization of lymphokine-activated genes in mouse macrophages led to the identification previously of Mumig, an interferon-γ-inducible murine gene that encodes a member of the chemokine family of cytokines. The Mumig cDNA probe was used to screen a cDNA library prepared from cultures of the THP-1 human monocytic cell line that had been treated with interferon-γ. This led to the identification of Humig, a new human member of the chemokine gene family. Humig is induced in THP-1 cells and in peripheral blood mononuclear cells by interferon-γ but not by interferon-α or by lipopolysaccharide. Analysis of mouse and human genomic DNAs suggested that the Mumig and Humig genes are true mouse-human homologues. The Humig mRNA encodes a predicted secreted HuMig protein of 103 residues, M_r 11,725.

Studies of mine to identify genes and proteins induced as part of the macrophage response to lymphokines led to the isolation of cDNAs encoding two mouse members of the chemokine family of cytokines - Crg-2 (1) and Mig (2), both thus far of undescribed functions. The chemokines are small, inducible, secreted proteins that can function as chemotactic factors for a variety of cells, as immune cell activators, and as positive and negative regulators of cell growth (reviewed in 3). The most striking feature in the primary structure of the chemokines is the presence of four invariant cysteine residues.

Crg-2 is likely the mouse homologue of the human IP-10, an interferon-inducible protein of undescribed function, and the crg-2 gene could be induced by IFN's α , β and γ (1). In contrast, mig was found to be inducible in macrophage-like cells only by IFN- γ (2) and presumably mediates a subset of IFN- γ 's biological activities. No homologue of the mouse mig, herein referred to as Mumig, had been described previously. To pursue investigations into the regulation of the mig gene(s) and the functions of the Mig protein(s), particularly in regard to the possible roles for Mig in human biology, studies were done in order to identify and characterize a human counterpart to Mumig. As described below, a cDNA has been isolated corresponding to a human gene designated Humig, the presumed human homologue of Mumig, and encoding a new IFN- γ -inducible member of the chemokine family.

<u>Abbreviations used in this paper:</u> IFN, interferon; PBMC, peripheral blood mononuclear cells; LPS, lipopolysaccharide; EU, endotoxin units; TNF, tumor necrosis factor.

Materials and Methods

Cell Culture, PBMC, IFNs and LPS. THP-1 cells were obtained from the American Type Culture Collection and grown in RPMI 1640 supplemented with 10% fetal bovine serum. For treating with interferons and other agents, the cells were suspended at approximately 1 x 106/ ml.

Human PBMC were prepared from citrate-anti-coagulated blood by centrifugation using Percoll (Pharmacia LKB) according to the supplier's specification. The banded mononuclear cells were washed twice in RPMI 1640 and resuspended in RPMI 1640 with 10% fetal bovine serum. In order to enrich for monocytes, 2.4 x 105 PBMC were plated per 10 cm gelatin-coated dish by the method of Jones et al (4). After 2 h at 37° C, the plates were washed gently three times and then treated as noted below.

Recombinant human IFN- γ was either from Collaborative Research or from Genentech (Actimmune), or was provided as a kind gift from Daniela Novick, Weizmann Institute of Science. Recombinant human IFN- α was either from Hoffman-LaRoche (Roferon-A) or was provided as a kind gift by Charles Weissmann, University of Zurich. LPS was from *E.coli* 0127.B8 (Difco Laboratories).

Following the treatments of the THP-1 cells and PBMC, media from the control and IFN- γ -treated cells were frozen and assayed subsequently for LPS contamination using a chromogenic *limulus* amebocyte lysate test (BioWhittaker). For the experiment shown with THP-1 cells, these LPS levels were between 5 and 6 EU/ml (about 0.5 ng/ml). In other similar experiments with THP-1 cells that showed the same responses to IFN- γ , LPS levels were < 0.25 EU/ml, and for the PBMC experiments shown below, levels were also < 0.25 EU/ml.

Construction and Screening of the cDNA Library. Using Fast Track Version 2.1 (Invitrogen), poly(A)+ RNA was prepared from 10^{8} THP-1 cells cultured for 9 h at 5 x 10^{5} cells/ml with 1000 U/ml of IFN- γ . Oligo-dT-primed cDNA was synthesized and a cDNA library was prepared in the λ ZAPII vector (Stratagene) and packaged according to the vendor's protocol with minor modifications. Screening using Mumig cDNA probe, radiolabelled by nick-translation, was done by hybridizing in 1 M NaCl at 65° C with the most stringent wash done in 0.5 M NaCl at 65° C as described (5). In vivo excision of cDNA inserts in the pBluescript SK-phagemid (Stratagene) from within the λ ZAP vector was done according to the vendor's protocols.

<u>Sequencing of Humig cDNAs</u>. Using deletions made using exonuclease III as well as Humig-specific oligonucleotide primers, both strands of Humig cDNA clone H-1-3 were sequenced completely. Sequencing of cDNA H-1-3 and other cDNA clones was done by the dideoxy method (6) using reagents and protocols supplied by United States Biochemical Corp.

Northern Blot Analysis. Agarose/formaldehyde gel electrophoresis using 1.2% agarose gels was done according to the procedure of Goldberg (7), and prehybridization, hybridization and washing were done as described (1). 32 P-labeled cDNA probes were made using random primers (8) and with reagents and protocols provided by Amersham. The IP-10 cDNA clone was isolated from the THP-1 library described above by using an oligonucleotide probe based on published sequences (9). The human TNF- α cDNA probe was from λ clone 42-4 (10) and was a gift from Genentech. The mouse aldolase A cDNA clone was a gift from A. Levy, L. Sanders and D. Nathans (Johns Hopkins University). Autoradiography using Kodak XAR film was done with an intensifying screen at -70° C.

Southern Blot Analysis. The Southern filters containing genomic DNA were the kind gift of Anthony Lanahan, Johns Hopkins University. Twenty µg of digested human DNA were loaded per lane, separated on a 1% agarose gel and transferred to supported nitrocellulose as described (11). The Mumig and Humig probes were prepared by the random primer method using cDNA's from which the poly(A) tail had been deleted. Prehybridization and hybridization were done overnight and for 2.5 days, respectively, at 42° C in 25% formamide, 0.8 M NaCl, 0.05 M NaH₂PO₄, 6 mM EDTA, 5 x Denhardt's reagent and 100 µg/ml salmon sperm DNA as described (12). The blots were washed twice briefly at room temperature in 2 x SSC (1x=150 mM sodium chloride, 15 mM sodium citrate) plus 0.1% SDS and then for 1 h at 42° C in 1 x SSC plus 0.1% SDS as described (12), followed by autoradiography.

Results and Discussion

A cDNA library was prepared using the λ ZAPII vector from cultures of the THP-1 human monocytic cell line that had been treated for 9 h with IFN- γ and the library was screened at

moderate stringency with a nearly-full-length Mumig cDNA probe. Six related but independent cDNA clones were isolated. The longest was H-1-3 of approximately 2.5 kb, and the sequence of this cDNA clone is shown in Fig. 1. Additional H-1-3 related cDNA clones were subsequently isolated and using these as well as the initial collection of cDNAs, more than 1900 of the 2545 base pairs in H-1-3 were independently confirmed and no mismatches with H-1-3 were found. cDNA clone H-1-3 contained a 42-residue poly(A) tail, not shown in Fig. 1, at its 3' end with a consensus polyadenylylation sequence appropriately located from nucleotides 2525-2530. Since the mRNA detected using an H-1-3 probe (see below) is approximately 3 kb long, taking into account the mRNA's poly(A) tail, cDNA clone H-1-3 is likely to be close to full-length. The single longest open reading frame beginning with a methionine contains 125 amino acids and is designated HuMig.

The extent of the sequence, if any, missing from the 5' end of the H-1-3 cDNA has not been determined experimentally, and the position of the initiator methionine has been assigned based on the comparison with the Mumig cDNA sequence. The open reading frame extends from nucleotides 40 to 414, with a termination codon at positions 415-417, followed by 2128 bases of presumed 3' non-translated sequence. The 125-residue HuMig protein is predicted to have a molecular weight (M_r) of 14,019. The amino terminal sequence has basic residues followed by a highly hydrophobic region characteristic of a signal peptide, and the most favorable site of cleavage as predicted by the rules of von Heijne (13) is C-terminal to Gly 22, leaving a protein of 103 residues, M_r 11,725. The absence of a second hydrophobic segment is consistent with HuMig being secreted and not membrane-bound. A prominent feature of the predicted HuMig sequence is an extremely basic C-terminal region that is characteristic of the chemokines, and HuMig has a calculated pI of >11.0.

A comparison between the predicted sequence for the MuMig and the HuMig proteins as shown in Fig. 2A demonstrates that allowing for a few single residue gaps, HuMig matches MuMig at 87 of 125 positions including the four invariant cysteines found in members of the chemokine family. The first and second cysteines of HuMig are separated by a single amino acid, as is the case for MuMig and other members of the so-called CXC subgroup of the chemokine family, a subgroup including platelet factor 4, IP-10 and IL-8 among others. The predicted site for N-linked glycosylation in the MuMig protein (Asn 58) is not conserved in HuMig.

The Humig mRNA (see below) is approximately 3 kilobases versus approximately 1.6 kilobases for the Mumig mRNA (2). The Humig cDNA contains a 3' non-translated region that is 1320 base pairs longer than the corresponding region in Mumig. Comparison between the Humig cDNA and the approximately 7 kilobases of the Mumig gene that have been sequenced (Wright, T., S. Willenberger, and J. Farber, manuscript in preparation) showed that sequences corresponding to the 3' end of the Humig cDNA are present in the mouse gene 3' to the 3' end of the mouse mRNA (data not shown). Therefore, differences in polyadenylylation, presumably through the acquisition of mutations, most likely accounts for the difference in length between the mature mouse and human transcripts. While the segment of the mouse cDNA immediately upstream of the Mumig polyadenylylation sequence can be readily aligned with the Humig cDNA, placing the site of polyadenylylation in the mouse at approximately position 1335 in the human, the

OTG AGA ANG GGT CGC TGT TGC TGG ATC AGC AGC AAC CAA GGG ACT ATC CAC CTA CAA TGC TTG AAA GAC CTT AAA CAA TTT GGC CGA AGC CGT TGC TGC GAG AAA ATT CAC TTT CCA GGG ACA AGG ACC TAG TGG TGG TTG GTA TAG GTG GAT GTT AGC AAC TTT CTG GAA TTT GTT AAA CGC GGT TGG GGA AGG ACG CTC TTT TAA Val Arg Lys Gly Arg Cys Ser Cys 1le Ser Thr Asn Gln Gly Thr Ile His Leu Gln Ser Leu Lys Asp Leu Lys Gln Phe Ala Pro Ser Pro Ser Cys Glu Lys Ile 240 250 GAM ATC ATT GCT ACA CTG ANG AAT GGA GTT CAM ACA TGT CTM ANC CCA GAT TCM GGA GAT GTG AAG GAM CTG ATT AAM ANG TGG GAG AMA CAG GTC AGC CAM ANG AMA CTT TAG TAM CAG TCT GAC TTC TTT GCC CAG GTT TGT ACA GAT TTG GGT CTM AGT CCT CTM CAC TTC GTC GAC TTC TTT GCC CAG GTT TGT CTM AGG ATT TGT CAG TCG GTT TTC TTT GLU IIe IIe Ala Thr Leu Lys Asn Gly Val Gln Thr Cys Leu Asn Pro Asp Ser Ala Asp Val Lys Glu Leu IIe Lys Lys Trp Glu Lys Gln Val Ser Gln Lys Lys 340 350 360 370 380 390 400 410 420 430 440

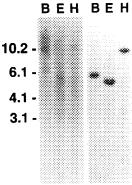

AMG CAM ANG ANT CCC ANA ANA CAT CAM ANA MAG ANA GTT CTG ANA GTT CCA ANA TCT CAM CAT TCT CAT CAM ANG ACT ACT TAM CAG ACCACTTCAC CAMINAGENT TTC GTT TTC TTT CCC TTT TTT GTM GTT TTT TTC TTT CAM GCC TTT TAM GCC TTT TAM GCC GTT TTT CTM TCC TTT TCT GTM GTT TTT TCT TTT 450 460 480 490 500 510 520 530 TETETETTA ANATOTICTA ITITAATTAT ACCCCTATCA TICCANAGGA GGATGCCATA TAATACAAAG GCTTATTAAT TICACTAGAA AATTTAAAAC ATTACTCTCA AATTGTAACT AAAGTTAGAA AGACACAATI TITACAAGAT AAAATTAATA TIGCGATAGT AAGGTTTCCT CCTACCGTAT ATTACTCTTC CGAATAATTA AACTGATCTT TITACATTTTT TAATTTTTT TAATCATCT TITACATTGA TITCAACTTCA TITCAACTTC 610 620 630 640 650 660 670 580 590 600 AGTTGATTIT ANGAATCCAA AGGITANGNA TIGITANAGG CINIGATHET CITIOTICIT CINCAGGG CONGINIANT TIGATCATGC TIMAGGCCAT GATTITAGCA ATACCCATCI CINCAGAGA TIGAACTANA TICITAGGT TIGAACTATA ANGTAGTAGG ANTICCGGTA CINAAATCCT TAGGGTACA GANCTANAGA GANCTAGAGA GATGGTGGGT GGTCAACTTA ANGTAGTAGG ANTICCGGTA CINAAATCCT TAGGGTACA GANCTACTA CITCACCCAA CCACATCCCA CTCACAACAC CTCCCTGGAA GACCAGCCCT AGCCTTCCAC GTACTGCAGC CTCCAGAGAG TATCTGAGGC ACATGTCAGC AAGTCCTAAG CCTGTTAGCA TCCTGGTGAGC CAAGTGGGTT GGTGTAGGGT GGTGTAGGGT GAGTGTTGTC GACGACCTT CTCGTGGGG TCCAAACGTG CATGACGTC ATAGACTCCG TGTACAGTCG TCAGAGTCCT ACACCACTCC 880 890 900 910 920 TGAAATTGAG CTGGACCTCA CCAAGCTGCT GTGGCCATCA ACCTCTGTAT TTGAATCAGC CTACAGGCCT CACACACAAT GTGTCTGAGA GATTCATGCT GATTGTTATT GGGTATCACC CACCGGTAGT TGGAGACATA AACTTAGTCG GATGTCCGGA GTGTGTGTTA CACAGACTCT CTAAGTACGA CTAACAATAA CCCATAGTGG 1010 1020 1030 1040 1050 1060 970 980 990 1070 1080 1090 ACTGGAGATE ACCACTOTOT GGCTTTCAGA GCCTCCTTTC TGGCTTTCGA AGCATGTGA TTCCATCCTTC CCCCCCTCAGC CTCACCACT TATTTCTTTT TGTTCCCCTT TGCTCACTC AAGTCAGGTTCAGCTCTAG TGGTCACACA CCGAAAGTCT CCGAGGAAAGCT TCCGTCACCT AAGGTAGAC GCGCGAGTCC GACTGGTGAA ATAAAGAAAA ACAAGGGGAA ACCAAAGTAAG TTCAGTCGGA 1150 1160 2170 1180 TTCTCCATC TACCACANTG CAGTOCCTT CTTCTCTCCA GTGCACCTG CATATECTCT CATTTATCTC AGTCACCT TTCTCCATCT TGTCCCCAAC ACCCCACACA AGTGCTTTCT TCTCCCANTT AAGAGTAGG ATGCTTATC GTCACGGAA GAACAGAGT CACGTGCACA GTATACCACA CTAANTAGAC TCACTTCAGG AAACAGTAGA ACAGGGGTTG TGGGGTTCT TCACGAAACA ACAGGGTTAA 1280 1290 1340 1350 CATCCTCACT CAGTCCAGCT TAGTTCAACT CCTCCCTCTT AAATAACCT TTTTCGACAC ACAAATTATC ITAAAACTCC TGTTTCACTT CGTTCACTA CGACGGGGG CTAGGGGTGA CCCAGGTCGA ATCAAGTTCA CGACGGAGAA TTTATTTCGA AAAACCTCT TGTTTAATAG AATTTTTCACG ACAAACTCAA CCAAGTCATC GTCTACCCAC AACACTCAAT GGTTAACTAA TTGTGAGTTA CCAATTGATT 1400 1410 1420 1430 1440 TTCTTGGGTG TITATCCTAT CTCTCCAACC AGATTGTCAG CTCCTTGAGG GCAGAGCCA CAGTATATTT CCCTCTTTCT TCCACAGTGC CTAATAATAC TGTGGAACTA GGTTTTAATA ATTTTTTAATAAGACCCAC AAATAGGATA GAGGGTTGG TCTAACAGTC CAGAACTA CAGAACTA GAGGAACTAC CAGAACTA GAGGAACTAC CAGAACTA AAGAACCAC AAATAGGATA GAGGACTAC CAGAACTA C CAGAGAGAG GCTGGCTCTT TCCTGGCTAC TCCATGTTGG CTAGCCTCTG GTAACCTCTT ACTTATATC TTCAGGACAC TCACTACAGG GTCTGGTCA CGACCGAGAA AGGACCGATG AGGTACAACC GATCGGAGAC CATTGGAGAA TGAATAATAG AAGTCCTGTG AGTGATGTCC TGATGTTGTT ATGGGCAGGA TGGCAACCAG ACCATTGTCT ACTACAACAA TACCCGTCCT ACCGTTGGTC TGGTAACAGA 1730 1740 GACCAGGGAT GATECAACAT COTTGTCTTT TIATGACAGG ATGTTTGCTC AGCTTCTCCA ACAATAAGAA GCACGTGGTA AAACACTTGC GGATATTGTG GACTGTTTTT AAAAAATAATA CAGTTTACCG CTGGTCCCTA CTACGTTGTA GGAACAGAAA AATACTGTCC TACAAACGAG TGGAACAGGT TGTTATTCTT CGTGCACCAT TTTGTGAACG CTGACAAAAA TTTTTTATAT GTCAAATGC 1810 1820 1830 AAAATCATAT AATCTTACAA TGAAAAGGAC TITATAGATC AGCAGTGAC CAACCTTITC CCAACCATAC AAAAATCCT TITCCCGAAG GAAAAGGGCT TICTCAATAA GCCTCAGCTT TCTAAGATCT
TTTTAGTATA TTAGAATCTT ACTTTTCCCG AAATATCTAG TCGCTCACTG GTTGGAAAAG GGTTGGTATG TITTTAAGGA AAAGGGCTTC CTTTTCCCGA AAGAGTTATT CGGAGTCGAA AGATTCTAGA AACAACATAG CCACCCACAT CCTTATCCAA ACTCATTTTA GGCANATATG AGTTTTATTG TCCGTTTACT TCTTTCAGAG TTTGTATTGT GATTATCAAT TACCACACCA TCTTGTTCTATC GGTGGCTCTA GGAATAGCTT TGACTAAAAT CCGTTTATCA TCAAAATAAC ACTAAAGTCTC AAACATACA CTAATAGGTTA ATGGTGTGGT AC TCTCCCATGA AGAAAGGGAA 2060 2070 2080 CGGTGAAGTA CTAAGCGCTA GAGGAAGGAG CGAAGTCGGT TAGTGGAAGG ATGATTGGTG CCCAGTTAGG CTCTGCAGGA TGTGGAAAACC TCCTTCCAGG GGAGGTTGAG TGAATTGTGT AGGAGAGGTT GCCACTTCAT GATTCGGGAT CTCCTTCGTC GGTTCAGCA ATGACCTTCG TACTAACCAC GGGTCAATCG GAGAGGTCCT ACACCTTTGG AGGAAGGTCC CCTCCAAGTC ACTTAACACA TCCTCTCCAA GTGTGTGGC AGANTITAA CCTATACTA CTTTCCCAAA TGAATCACT GCTCACACTE CTGATGATTT AGAGTGCTGT CCGGTGGAGA TCCCACGCG ACGTTTAT TAATCATGAA ACTCCCACT 2350 2360 TECTTEATET AACTICECTE AAAAATCTAA GTETTTEATA AATTTGAGAG TECTGAGEC ACTACCTTG CATCTCACAG GTAGACAGTA TATAACTAAC AACGAAGAC TACATATTET CACTGAGACACA AGGAAGTACA TTGAAGGGAC TTTTTAGATT CACAAAGTAT TTAAACTCTC AGACACTGG TGAATGGAC GTAGAGTGTC CATCTGTCAT ATATTGATTG TTGGTTTCTG ATGTATAACA GTGACTGTGT 2440 2450 2460 2470 2480 2490 2400 2410 2420 2510 2520 CACCITATAN TCATITATCA TATATATACA TACATGCATA CACTCICANA GCMATANIT TITCACITCA ANACAGTATI GACTGTATA CCITGTANIT TGAATATIT TCITTGTTAN ANTAGAATGG
GTGCAATATI AGTAAATAGT ATATATATGT ATGTACGTAT GTGAGAGTIT CGTTTATTAN ANAGTGAAGT TITCTCATAN CTGAACATAT GGAACATTAN ACTTTATANA AGAACAATI TTATCTTACC TATCAATAAA TAGACCATTA ATCAG ATAGTTATTT ATCTGGTAAT TAGTC

Figure 1. The Humig cDNA sequence and inferred amino acid sequence of HuMig. The nucleotide sequence is that of the single cDNA clone H-1-3. Both strands of cDNA H-1-3 were sequenced completely. The 42-residue poly(A) tail of clone H-1-3 is not shown. The inferred amino acid sequence is from the longest open reading frame that begins with a methionine, and the position of the initiator methionine was assigned based on a comparison with the sequence of the Mumig cDNA.

```
HuMig MKKSGVLFLLGIILLVLIGVQGTPVVRKGRCSCISTNQGTIHLQSLKDLKQFAPSPS
        MuMig MK-SavlfllGIIileqcGVrGTLViRnaRCSCISTsrGTIHykSLKDLKQFAPSPn
                                                    113
   HuMig cekieiiatlkngvatclnpdsadvkelikkwekavsakkkakngkkhakk-kvlkv
        MuMig CnktEllatikngdqtCldPDsanvkklmkeWEKkinqkkkqkrgkkHqknmknrkp
                                                    113
   HuMig RKSQ-RSRQKKTT
                    125
          1 1 1 111
   MuMig ktp@sRrRsrKTT
                    126
В
    Humia
          atccaatacaggagtgacttggaactccattctatcactATG
           - 1
    Mumig
          tcactccaacacag\underline{tgactca}\\atagaactcagctctgccATG
```

Figure 2. (A) Comparison of the inferred amino acid sequences of the HuMig and MuMig proteins. Numbers refer to the positions of the amino acid residues at the ends of the lines. Matching amino acids are connected by vertical lines and mismatches are noted by lower case letters in the MuMig sequence. (B) Comparison of 5' non-translated sequences of Mumig and Humig. The sequences are aligned according to the ATG's (capitalized) corresponding to the codons for the presumed initiator methionines, and extend 5' as far as the end of the sequence available for Humig. Matches between the sequences are marked with vertical lines and the AP-1 site in Mumig is underlined.

AGTAAA Mumig polyadenylylation sequence (2) is not conserved in the human sequence. As regards the Humig and Mumig 5' non-translated regions, Fig. 2B shows a comparison of these sequences aligned with respect to the presumed initiator ATG codons. There is notable conservation of the palindromic sequence AGTGACT. Part of this sequence, TGACT, corresponds to the five, 5' nucleotides in an AP-1 site (14), with a complete AP-1 site present in the Mumig but not in the Humig sequence. The characteristics and strict conservation of the AGTGACT sequence provide presumptive evidence that the sequence serves as a recognition site for a DNA binding protein, although its presence in the mig mRNAs raises other possibilities as well. Except for the center base pair, the mig sequence matches a sequence found in the core of the X box (AGTAACT) in the promoter of the class II DQa-gene (15). The X boxes, identifiable as conserved, similar but non-identical elements in the class II MHC genes, are critical for induction of these genes by IFN $-\gamma$ (16). In at least one experimental system, sequences 3' to the start site for transcription of the Mumig gene were not required to confer responsiveness to IFN-y on a heterologous promoter (17). Nonetheless, sequences outside the 5' flanking regions of the mig genes might be important in the overall response to IFN-y, such as the sustained elevation in the levels of Mumig mRNA seen with continued treatment with IFN-γ(18). To investigate further the relationship between the Humig and the Mumig genes, Southern filters prepared using restricted human DNA were hybridized both with the Humig cDNA probe and with the Mumig cDNA probe under conditions of reduced stringency. The Humig probe hybridized with a single band in each sample of digested human DNA (Fig. 3), suggesting that Humig is a single copy

Probe: Mumig Humig

Figure 3. Human DNA probed with Mumig and Humig. Human genomic DNA was digested with BamHI or EcoRI or Hind III and 20 µg were loaded per lane, separated on a 1% agarose gel and transferred to supported nitrocellulose as described (11). The filter was cut, and using either a Mumig or Humig cDNA probe, portions of the filter were hybridized and washed under conditions of reduced stringency as described in Materials and Methods. The autoradiograms were aligned according to the sample wells of the gel. The sizes and positions of DNA markers in kilobase pairs are noted on the left. Exposures were for 20 h.

gene. The same Humig bands were detected using the mouse Mumig probe, suggesting that the human gene most closely related to Mumig is in fact Humig.

The induction of the Humig gene was evaluated in the THP-1 cell line and in human, monocyte-enriched PBMC. Fig. 4 demonstrates that the Humig mRNA, approximately 3 kb long as compared to RNA standards (not shown) is inducible dramatically in the THP-1 human monocytic cells after 8 h of treatment with IFN- γ but not significantly by IFN- α or by LPS, and that induction by IFN- γ is not prevented by the protein synthesis inhibitor cycloheximide. The results as shown using IP-10 and TNF- α cDNA probes demonstrated that the absence of induction of Humig was not due to the cells' failure to respond to IFN- α or LPS. The aldolase mRNA functioned as a constitutively expressed and non-induced control. Fig. 5 demonstrates similar results with human monocyte-enriched PBMC, showing induction in response to IFN- γ without significant induction by IFN- α or by LPS. The electrophoretic mobilities of the Humig mRNA species from THP-1 cells and from PBMC were indistinguishable.

The selective induction of Humig by IFN-γ suggests that Humig may mediate a portion of the physiological and/or pharmacological activities of IFN-γ such as anti-viral or anti-growth effects or the activation of macrophages for the production of reactive oxygen species important for the killing of tumor cells and intracellular pathogens (19). Experiments using reverse transcriptase-polymerase chain reaction to analyze the expression of cytokine mRNAs in the brains of human immunodeficiency virus-infected and control patients have shown, not surprisingly, that there is a positive correlation between the levels of Humig and IFN-γ mRNAs (20). Additional studies to evaluate the expression of Humig in conditions where IFN-γ is known or suspected to be involved will help direct investigations into the activities of the HuMig cytokine, investigations aimed at determining the role of HuMig in human biology.

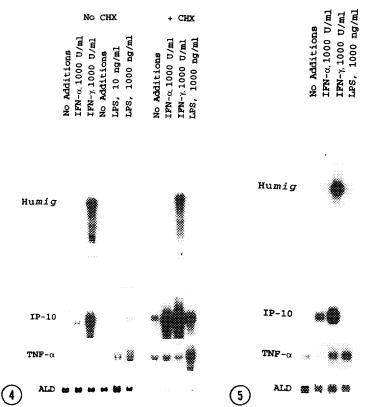


Figure 4. Humig mRNA in THP-1 cells treated with IFN- α and - γ and LPS. Total RNA was prepared from THP-1 cells that had been treated for 8 h as noted and 20 µg were loaded per lane, fractionated in a 1.2% agarose/formaldehyde gel, transferred to nitrocellulose and hybridized sequentially to cDNA probes for Humig, IP-10, TNF- α , and aldolase A (ALD). Cycloheximide (CHX) was used at a concentration of 50 µg/ml and was added 15 minutes before the other treatments. The IFN and LPS experiments were done separately and a No Additions control without CHX is shown for each experiment. The single No Additions control with CHX was done as part of the IFN experiment. The blot was stripped between hybridizations according to the manufacturer's specifications (Schleicher & Schuell). The size of the Humig mRNA was estimated at 3 kilobases on the basis of RNA markers (BRL) not shown. The Humig signal is from a 12 h exposure.

Figure 5. Humig mRNA in monocyte-enriched human PBMC treated with IFN-α and γ and LPS. Total RNA was prepared from monocyte-enriched PBMC that had been treated for 6 h as noted and 3 µg were loaded per lane and analyzed as described in the legend to Figure 4. The cells were prepared using gelatin-coated plates according to the method of Jones et al (4). The mobility of the Humig mRNA from PBMC was indistinguishable from the mobility of the Humig mRNA from THP-1 cells. The Humig signal is from a 24 h exposure.

Acknowledgments

Thanks are due for extraordinary support to Daniel Nathans, Hyun Shin, Chaim Kahana and Thomas Moench.

I am indebted as well to Leonidas Koniaris, Anthony Lanahan, Eran Rom, Se-Jin Lee, Keith Peden, Padmavathy Vanguri, Steve Wesselingh, Timothy Wright, Diane Griffin, and James Kadonaga. Special thanks go to Christine Moss for work on the figures and the manuscript.

The work was supported by grants CA-48059 and CA-52001 from the National Cancer Institute.

References

- 1. Vanguri, P. and Farber, J.M. (1990) J. Biol. Chem. 265:15049-15057.
- 2. Farber, J.M. (1990) Proc. Natl. Acad. Sci. USA 87:5238-5242.
- Oppenheim, J. J., Zachariae, C. O. C., Mukaida, N., and Matsushima, K. (1991) Ann. Rev. 3. Immunol. 9:617-648.
- 4. Jones, B. M., Nicholson, J. K. A., Holman, R. C. and Hubbard, M. (1989) J. Immunol. Meth. 125:41-47
- 5.
- Peden, K.W.C., Mounts, P. and Hayward, G. S. (1982) Cell 31:71-80. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74:5463-5467. 6.
- 7.
- Goldberg, D. A. (1980) Proc. Natl. Acad. Sci. USA 77:5794-5798. Feinberg, A. P., and Vogelstein, B. (1983) Anal. Biochem. 132:6-13. 8.
- Luster, A. D., Unkeless, J. C. and Ravetch, J. V. (1985) Nature (Lond.). 315:672-676. Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., Kohr, W. J., Aggarwal, B. B., and Goeddel, D. V. (1984) Nature (Lond.). 312:724-729. 10.
- Lanahan, A., Williams, J.B., Sanders, L.K. and Nathans, D. (1992) Mol. and Cell. Biol. 12:3919-11.
- Phillips, M. A., Coffino, P. and Wang, C.C. J. Biol. Chem. (1987) 262:8721-8727. 12.
- 13. von Heijne, G. (1986) Nucl. Acids. Res. 14:4683-4690.
- 14.
- Lee, W., Mitchell, P. and Tjian, R. (1987) Cell 49:741-752. Ono, S. J., Liou, H-C., Davidon, R., Strominger, J. L. and Glimcher, L. H. (1991) Proc. Natl. 15. Acad. Sci. USA. 88:4309-4312.
- 16. Yang, Z., Sugawara, M., Ponath, P. D., Wessendorf, L., Banerji, J., Li, Y. and Strominger, J. L. (1990) Proc. Natl. Acad. Sci. USA. 87:9226-9230.
- Wright, T. M., and Farber, J. M. (1991) J. Exp. Med. 173:417-422. 17.
- 18.
- Farber, J. M. (1992) Mol. and Cell. Biol. 12:1535-1545. Nathan, C. F., Prendergast, T. J., Wiebe, M. E., Stanley, E. R., Platzer, E., Remold, H. G., 19.
- Welte, K., Rubin, B. Y. and Murray, H. W. (1984) J. Exp. Med. 160:600-605. Wesselingh, S.C., Powers, C.C., Glass, J., Tyor, W.R., McArthur, J.C., Farber, J.M., Griffin, J.W., and Griffin, D.E. (1993) Annals Neurol., in press. 20.